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Abstract—The combined convection boundary layer on a horizontal circular cylinder in a stream flowing

vertically upwards is studied in both the cases of a heated and cooled cylinder. It is found that

heating the cylinder delays separation and can, if the cylinder is warm enough, suppress it completely.

Cooling the cylinder brings the separation point nearer to the lower stagnation point and for a sufficiently
cold cylinder there will not be a boundary layer on the cylinder.

NOMENCLATURE
a, radius of cylinder;
g acceleration of gravity;
Gr,  Grashof number, =gB|AT|a3/v*;
Pr, Prandt] number;
0, heat transfer;
Re, Reynolds number, = Uqa/v;
T, temperature of fluid;
To., temperature of ambient fluid;
T, temperature of cylinder;
AT, temperature difference, = T; — Tp;
Uy, freestream;
X, co-ordinate along surface of cylinder;
Vs co-ordinate normal to cylinder;
X,, separation point.

Greek symbols

o, non-dimensional parameter, = gBAT a/U3;
B, coefficient of expansion;

v, kinematic viscosity;

T skin friction.

1. INTRODUCTION

THE PROBLEM of combined convective heat transfer
in boundary layers on vertical flat plates for both
isothermal and constant heat flux cases has received
much attention in the past. Gryzagoridis [1] gives a
good description of the previous work on the subject.
The problem for a more general body shape has had
little discussion. Acrivos [2] considered the form of
solution in the limits Pr -0 and Pr— co. Recently
Sparrow and Lee [3] looked at the problem of the
flow of a vertical stream over a heated horizontal
circular cylinder. They obtained a solution by expand-
ing velocity and temperature profiles in powers of x,
the co-ordinate measuring distance from the lowest
point on the cylinder. This problem is interesting in
that both the forced and natural convection boundary
layers have the same dependence on x near the lower
stagnation point and so both effects are important at
the leading edge, whereas for boundary layers on flat
plates the natural convection effects modify the forced
convection and are not apparent at the leading edge.
In this paper we extend the problem discussed in [3].
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We consider the flow of a uniform stream over a
horizontal circular cylinder which is held at a constant
temperature Ty surrounded by fluid at temperature To,
with the stream flowing in the upward vertical direc-
tion. For large Reynolds and Grashof numbers, the
equations governing the flow are the boundary-layer
equations. These are solved numerically using a method
similar to that given in [4]. The solution depends on
the non-dimensional parameter « = gBATa/U3, where
la| = Gr/Re®. For small |«| forced convection effects
dominate, while for large |} it is the natural convec-
tion which is important, so that values of a of O(1),
where both effects are comparable, are of most interest.
Solutions for small or large « can be obtained as
perturbations on the respective forced or natural con-
vection solution.

The cases when o > 0Ty > Tp) and a < (T, < Tp)
are considered. For a heated cylinder (a > 0) both the
forced and natural convection boundary layers start
at the lower stagnation point with the buoyancy forces
accelerating the fluid in the boundary layer, and so have
the effect of reducing the deceleration of the fluid caused
by the adverse pressure gradient. In this case the
separation of the boundary layer is delayed, and it is
found that there is a value of « for which the boundary
layer does not separate at all. For values of a greater
than this, the boundary layer remains on the cylinder
up to the highest point where the boundary layers on
each side must collide and leave the surface to form a
thin wake above the cylinder. For a cooled cylinder
(o < 0), the buoyancy forces also retard the fluid and
so the separation point is brought nearer to the lower
stagnation point. A value of o is found for which the
boundary layer separates at this point. For values of
less than this a boundary-layer solution is not possible.

Throughout this paper results are given for Pr = 1.
Some of the calculations were done for Pr = 0.72 (air),
but these results were found to differ only slightly
from those given.

2. EQUATIONS

On the assumption that AT /T, « 1, Gr » | and Re »
1 the equations are the incompressible boundary-layer
equations; the momentum equation including both a
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pressure gradient term due to the variation in the main
stream and a body force term gBf(T— Ty)sin(x/a)
(x measuring distance from the lower stagnation point
and a being the radius of the cylinder) arising from
the buoyancy forces. A uniform stream U, is flowing
vertically upwards over the cylinder, so that the free-
stream velocity for the boundary-layer equations is
Ugsin(x/a).

In terms of the non-dimensional variables X, Y, 0
and y, where X = x/a, Y = Rety/a, y = vRe?y and
0 = (T—Ty)/AT (i is the stream function defined in the
usual way), the equations are

29 W oY
in X cos X X=or 2 P ¥V (
ay3+s1n cos X +af sin Y 2XaT axayz()
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0 inX, -0 Y
— — — 0.
a Sin X, as o8]

Here o = gBATa/U3 is a non-dimensional parameter
which describes the relative importance of natural con-
vection to forced convection. This is seen by writing
fa| = Gr/Re?.

We have a > 0 for a heated cylinder in which case
the buoyancy force term is positive and this aids the
development of the boundary-layer (acting like a
favourable pressure gradient), while for o < 0 the cylin-
der is cooled and the buoyancy forces oppose the
development of the boundary layer.

3. SOLUTION
Equations (1) and (2) were solved numerically using
a method similar to that described in [4]. In this case
sinX/X -1 as X -0 so the appropriate transfor-
mation is iy = Xf(X, Y). Equations (1) and (2) then
become
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Equations (4) and (5) were solved using g = ¢f/¢Y
and 6 as dependent variables as follows. Derivatives
in the X-direction were replaced by differences and all
other terms averaged. This gave two ordinary differ-

ential equations which were then differenced in the
Y-direction and the resulting non-linear algebraic
equations solved iteratively by the Newton-Raphson
method. The linear algebraic equations arising in the
iterative process were solved by Choleski decomposi-
tion into upper and lower triangular matrices, so that
using the particular forms of the equations, the com-
puter storage could be kept to a minimum. The iter-
ations were repeated until the difference was less than
107¢, and errors in the X-direction were kept small
by choosing the step length in this direction so that the
difference in two solutions, obtained by covering the
interval in one and then two steps was less than 5.107 3.
A step length of 0.1 in the Y-direction was found
satisfactory for an overall accuracy of four figures. The
position where the outer boundary condition was
applied had to be varied from ¥ = 10to Y = 20.
From the velocity and temperature profiles thus
calculated, heat transfer Q@ and skin friction 7, de-

fined by
a foT 00
= ——Re ¥ ) = (2
¢ AT ¢ (ﬁ.\r‘)o <5Y)o

a oy o
—Re ML) = x( L
Up ¢ <8Y2)0 <6Y2)0’

were evaluated. Values of Q and ., for various o are
given in Tables 1 and 2 respectively.

The case a = 0 is the forced convection solution and
values of 1, have already been obtained by [5] using
the transformation suggested by [6]. This transfor-
mation could not be used for this problem as it is
singular at X = 7. The results show that increasing «
delays separation and that separation can be sup-
pressed completely in 0 < X < = for sufficiently large o.
The variation of the separation point X; with a is
given in Fig. 1. The actual value of « which first gives
no separation is difficult to determine exactly as it has
to be found by successive integrations of the equations,
and a further difficulty was encountered as the numeri-
cal solution indicated an increase in t,, and Q very

and

Ty =

v
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FIG. 1. Variation of the separation point X; with a.
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Table 1. Heat transfer Q for various

X

X -1.75 —1.5 - 1.0 -0.5 0.0 0.5 0.88 0.89 1.0 20 5.0
0.0 0.4199 04576  0.5067 0.5420 0.5705 0.5943 0.6096 0.6100 0.6156 0.6497 0.7315
0.2 0.4059 0.4498 0.5018 0.5380 0.5668 0.5911 0.6067 0.6071 0.6115 0.6471 0.7261
0.4 0.4236 0.4865 0.5260 0.5564 0.5817 0.5979 0.5983 0.6028 0.6393 0.7193
0.6 0.3373 0.4594 0.5056 0.5391 0.5661 0.5833 0.5837 0.5885 0.6264 0.7082
0.8 0.4160 0.4760 0.5145 0.5443 0.5631 0.5636 0.5686 0.6086 0.,6929
1.0 0.3326 0.4353 0.4826 0.5165 0.5375 0.5380 0.5435 0.5863 0.6737
1.2 0.3784 0.4426 0.4828 0.5066 0.5072 0.5133 0.5597 0.6509
1.4 0.2736 0.3928 0.4431 0.4709 0.4716 0.4785 0.5294 0.6248
1.6 0.3280 0.3972 0.4307 0.4314 0.439%4 0.4960 0.5959
1.8 0.2114 0.3444 0.3863 0.3872 0.3967 0.4601 0.5645
20 0.2821 0.3383 .3394 0.3509 0.4225 0.5311
22 0.1970 0.2871 {.2885 0.3029 0.3842 0.4959
2.4 0.2331 0.2350 0.2540 0.3460 0.4592
2.6 0.1766 0.1796 0.2061 0.3088 0.4205
2.8 0.1162 0.1227 0.1634 0.2730 0.3790
3.0 0.0745 0.1354 0.2381 0.3321
T 0.1033 0.1306 0.2122 0.2918
Table 2. Skin friction t,, for various a
A

X —~1.75 —-15 - 1.0 —0.5 0.0 0.5 0.88 0.89 1.0 20 5.0
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4.0000 0.0000 0.0000
0.2 0.0066 0.0533 Q.1257 0.1871 0.2427 0.2945 0.3321 0.3330 0.3436 0.4354 0.6803
04 0.0741 0.2266 0.3511 0.4627 0.5662 (.6409 0.6429 0.6639 0.8464 1.3318
0.6 0.0026 0.2784 0.4706 0.6393 0.7941 0.9057 0.9085 0.9398 1.2106 1.9277
0.8 0.2554 0.5271 0.7552 09614 1.1088 1.1125 1.1538 1.5094 2.4447
1.0 0.1069 05051 0.7982  1.0561 1.2383 12430  1.2938 1.7295  2.8648
1.2 0.3890 0.7615 1.0727 1.2886 1.2941 1.3541 1.8637 31761
14 0.1253 0.6429 1.0121 1.2608 1.2671 1.3356 1.9117 3.3729
1.6 0.4405 0.8814 1.1625 1.1695 1.2459 1.8793 3.4557
1.8 0.1069 0.6927 1.0072 1.0491 1.0986 1.7781 34300
20 0.4599 0.8131 0.8295 09117 1.6236 33053
22 0.1842 0.6012 0.6103 0.7063 14334 3.0928
24 0.3936 (.4033 0.5048 1.2248 2.8033
2.6 02112 p2219 03287 10123 24447
2.8 00711 0.0847 0.1979 0.8043 20188
30 0.0149 0.1292 0.6002 1.5154

n 0.0504 0.1206 0.4508 1.0919

close to X = r for solutions with a near this value. This
was thought to be caused by the finite difference re-
placement of the pressure gradient term, which could
be done in several ways. Various forms were tried, all
of which gave the above effect with the results in good
agreement with each other. The numerical solutions
indicate that this value lies between « =088 and
o = 0.89. In fact we can argue that separation will not
occur fora > 1, as follows. Equation (1) gives,on Y =0,
3y
ﬁgﬁ-sz(oH'cosX) =0.

Though (6%/0Y?)o = 0 at X = X,, the streamwise vel-
ocity component dy/0Y will be positive in the neigh-
bourhood of Y = 0 and so (0*§/2Y%o 2 0 at X = X,.
From the above, this means that sin X(x+cos X) <0,
which cannot hold in 0 € X < nfor ¢ > 1. The numeri-
cal results also show that, in those cases when the

boundary layer separates, 7, — 0 and Q — Q,(+#0) as
X — X, in a singular way as was previously found by
(4] for a vertical flat plate.

From Fig. 1, it can be seen that there is a value of
a = oy below which a boundary-layer solution is not
possible. The reason is that for o < 0 the cylinder is
cooled and the natural convection boundary layer
would start at X = n and for sufficiently small « there
comes a point where the flow of the stream upwards
cannot overcome the tendency of the fluid next to the
cylinder to move downwards under the action of the
buoyancy forces. This is an unstable situation and
whether a boundary layer can exist at all on the
cylinder for & < ao is still an unanswered question.

The equations for fo(Y) and 0,(Y), the values of [
and 6 at the stagnation point X = 0 are

o'+ fofd —fR+1+aby =0
B+ Prichy =0

(7
()
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with
fol0) = f5(0) =0, Bo(0) =1
fo—1,

(where primes denote differentiation with respect to Y).
These equations are in agreement with those given in
[3]. and they show that the forced and natural con-
vection effects have the same importance near X = 0.
Equations (7) and (8) were solved using the same
method as was used in the solution of the ordinary
differential equations arising in the solution of the full
equations. Values of f5(0) and 8,(0) for various o are
given in Table 3. uy was found by solving equations

9
fg—>0 as Y —oc.

Table 3. Values of f5'(0) and 65(0) for various x

fo(0) 05(0)
% fo(0) 05(0) (series) (series)
—-2.0 —0.29856 —0.33098
-19 —0.09987 —0.38467
—1.8 0.01950 —0.40993
—-1.6 0.20923 —0.44409
—-14 0.36982 —0.46907
—1.2 0.51460 —0.48935
—1.0 0.64886 —0.50667
—-0.8 0.77554 —0.52193
-0.6 0.89627 —0.53566
—-04 1.01219 —0.54818
—0.2 1.12410 —0.55973
0.0 1.23259 —0.57047
0.2 1.33810 —0.58052
0.4 1.44100 —0.58999
0.6 1.54158 —0.59895
0.8 1.64007 —0.60747
1.0 1.73666 -0.61559 1.848 —0.835
1.4 1.92481 —-0.63079 2.003 —0.786
1.8 2.10711 —0.64484 2.167 —0.765
22 2.28432 —0.65792 2.332 —~0.755
2.6 2.45704 —0.67018 2.496 -0.751
3.0 2.62587 —0.68173 2.659 -0.751
4.0 3.03319 —0.70806 3.056 —0.759
5.0 3.42296 —0.73151 3.441 -0.771
6.0 3.79838 -0.75274 3.812 —0.785
7.0 4.16176 —-0.77218 4.173 —0.800
8.0 4.51480 —0.79017 4.525 -0.814
9.0 484881 —0.80693 4.867 —0.828
10.0 5.19484 —-0.82264 5202 —0.841

(7) and (8) by a matching method subject to the extra
boundary condition that f5(0) = 0, treating o as un-
known. This gave oy = — 1.81776. A solution was found
for o < ap which gave f5(0) < 0.

For a > 0, a solution of equations (7) and (8) for
large « can be found. Following [2], we make the

transformation
Jo(Yy=atd(n), Bo(Y)=6(n) and n=o?Y.

The equations become

¢///+0+¢¢u_¢/2+a'l=0 (10)
0"+ Prepf =0 (11
with boundary conditions
0)=¢(0)=0, 60)=1
$0) = ¢'(0) (0) 12

¢ ot
(where primes denote differentiation with respect to n).
(12) suggests an expansion in the form

¢ = doln)+a 21 (m)+a " palm) + ...
0 = Bo(n) +o~ 0, 0n) +a 102 + ...
The equations for ¢¢ and 8y are those for the natural
convection boundary layer at the lower stagnation
point of a horizontal cylinder and are given by [7].
The equations for ¢; and 6; (i=1,2,...) are linear,
and on solving these, expansions for fo'(0) and 65(0),
valid for large o, are found as
f3(0) = 2%(0.81701 +-0.02319a "% + 1.00801a "1 + .. )
(13)
06(0) = —}(0.42143+ 0047012 * +0.36652a ' + .. )
(14)
Values of f5'(0) and 65(0) evaluated from (13) and (14)

are given in Table 3, and these show good agreement
with the exact values even at moderate values of a.

-0 as n—- o0,
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CONVECTION MIXTE DEPUIS UN CYLINDRE CIRCULAIRE HORIZONTAL

Résumé— Le couche limite de convection mixte sur un cylindre circulaire horizontal, placé dans un écoule-

ment ascendant vertical, est étudié dans les deux cas du cylindre chauffé et refroidi. On trouve que le

chauffage retarde la séparation et peut, si le cylindre est suffisamment chauffé, la supprimer complétement.

Le refroidissement du cylindre rapproche le point de séparation du point d’arrét le plus bas et pour un
cylindre assez refroidti il n’y a pas de couche limite sur le cylindre.
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GEMISCHTE KONVEKTION AN EINEM HORIZONTALEN KREISZYLINDER

Zusammenfassung —Sowohl fiir beheizte wie fiir gekiihlte, horizontale Kreiszylinder wird die Grenzschicht

bei gemischter Konvektion und senkrecht aufsteigender Strémung untersucht. Es wurde festgestelit, daB

durch die Beheizung des Zylinders die Abldsung verzdgert wird; bei entsprechend hohen Zylindertem-

peraturen tritt liberhaupt keine Ablésung mehr auf. Eine Kiihlung des Zylinders bewirkt eine Anndherung

des Ablgsepunktes an den unteren Staupunkt. Bei geniigend tiefen Zylindertemperaturen ist iiberhaupt
keine Grenzschicht mehr am Zylinder zu beobachten.

CMEIAHHAS KOHBEKLIMS OKOJIO T'OPU3OHTAJIBHOI'O
KPYIJIOro uMjinvnHAPA

AnHotauua — Mccnenyercs norpaHuyHeiil CJIOM Ha TOBEPXHOCTH TOPHU3OHTANBHOTO KpYFJIOro

UMIMHAPA (IIPM HATPEBE M OXJIaX/eHUH) NIPH CMEILAHHOW KOHBEKLIMH B HaNPaBJIEHHOM BEPTHKAJILHO

ppepx motoke. IMoka3aHo, YTO HarpeB UMJIMHOpPA 3aTATHBAE€T OTPbIB MOTPaHMYHOTO CJIOS H Aaxe

MOXET MOJIHOCTBIO MCKITIOYHTh €ro B CJIyYae CHIBHOTrO Harpepa. OxJyaxaeHue LIMIIMHApA CMeIlaeT

TOYKY OTpbIBA MOTPAHHYHOTO CJIOA K KPHTHYECKOM TOYKE, a B Cllydae NOCTAaTOYHOTIO OXJIaXICHHA
HHIHHApPA IOTPaHMYHBIH C10M He 06pa3yeTcs Ha ero NOBEPXHOCTH.
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