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Abstract-The combined convection boundary layer on a horizontal circular cylinder in a stream flowing 
vertically upwards is studied in both the cases of a heated and cooled cylinder. It is found that 
heating the cylinder delays separation and can, if the cylinder is warm enough, suppress it completely. 
Cooling the cylinder brings the separation point nearer to the lower stagnation point and for a sufficiently 

cold cylinder there will not be a boundary layer on the cylinder. 

NOMENCLATURE 

a, radius of cylinder; 

93 acceleration of gravity; 

Gr, Grashof number, = gPlATla3/vZ; 

Pr, Prandtl number; 

Q> heat transfer; 

Re, Reynolds number, = U0 a/v; 

T, temperature of fluid; 

To, temperature of ambient fluid; 

Tl, temperature of cylinder; 

AT temperature difference, = Tl - To; 

UO, free stream; 

X, co-ordinate along surface of cylinder; 

Y> co-ordinate normal to cylinder; 

-L separation point. 

Greek symbols 

6 non-dimensional parameter, = gfiAT a/U;; 

l-4 coefficient of expansion; 

v, kinematic viscosity; 

7wr skin friction. 

1. INTRODUCTION 

THE PROBLEM of combined convective heat transfer 

in boundary layers on vertical flat plates for both 
isothermal and constant heat flux cases has received 
much attention in the past. Gryzagoridis [l] gives a 
good description of the previous work on the subject. 
The problem for a more general body shape has had 

little discussion. Acrivos [2] considered the form of 
solution in the limits Pr --t 0 and Pr --f co. Recently 
Sparrow and Lee [3] looked at the problem of the 
flow of a vertical stream over a heated horizontal 
circular cylinder. They obtained a solution by expand- 

ing velocity and temperature profiles in powers of x, 
the co-ordinate measuring distance from the lowest 
point on the cylinder. This problem is interesting in 
that both the forced and natural convection boundary 
layers have the same dependence on x near the lower 
stagnation point and so both effects are important at 
the leading edge, whereas for boundary layers on flat 
plates the natural convection effects modify the forced 
convection and are not apparent at the leading edge. 

In this paper we extend the problem discussed in [3]. 

We consider the flow of a uniform stream over a 
horizontal circular cylinder which is held at a constant 
temperature Tt surrounded by fluid at temperature To, 

with the stream flowing in the upward vertical direc- 
tion. For large Reynolds and Grashof numbers, the 
equations governing the flow are the boundary-layer 
equations. These are solved numerically using a method 
similar to that given in [4]. The solution depends on 
the non-dimensional parameter a = gflATa/Ua, where 

Ial = Gr/Re’. For small 1~1 forced convection effects 
dominate, while for large ltll it is the natural convec- 

tion which is important, so that values of a of O(l), 
where both effects are comparable, are of most interest. 
Solutions for small or large c( can be obtained as 
perturbations on the respective forced or natural con- 

vection solution. 

The cases when c( > 0( Tl > To) and c( < O(T, < To) 

are considered. For a heated cylinder (a > 0) both the 
forced and natural convection boundary layers start 
at the lower stagnation point with the buoyancy forces 

accelerating the fluid in the boundary layer, and so have 

the effect of reducing the deceleration of the fluid caused 
by the adverse pressure gradient. In this case the 
separation of the boundary layer is delayed, and it is 

found that there is a value of tl for which the boundary 
layer does not separate at all. For values of c( greater 
than this, the boundary layer remains on the cylinder 

up to the highest point where the boundary layers on 
each side must collide and leave the surface to form a 
thin wake above the cylinder. For a cooled cylinder 
(c( < 0), the buoyancy forces also retard the fluid and 
so the separation point is brought nearer to the lower 
stagnation point. A value of u is found for which the 
boundary layer separates at this point. For values of c( 
less than this a boundary-layer solution is not possible. 

Throughout this paper results are given for Pr = 1. 

Some of the calculations were done for Pr = 0.72 (air), 

but these results were found to differ only slightly 
from those given. 

2. EQUATIONS 

On the assumption that AT/To CC 1, Gr >> 1 and Re >> 

1 the equations are the incompressible boundary-layer 
equations; the momentum equation including both a 
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pressure gradient term due to the variation in the main 
stream and a body force term gjI(T- Ta)sin(x/a) 
(x measuring distance from the lower stagnation point 
and a being the radius of the cylinder) arising from 
the buoyancy forces. A uniform stream :Ua is flowing 

vertically upwards over the cylinder, so that the free- 
stream velocity for the boundary-layer equations is 

U0 sin(x/a). 
In terms of the non-dimensional variables X, Y, 0 

and I& where X = x/a, Y = Re*yJa, 1,6 = vRei$ and 

0 = (T- TO)/AT ($ is the stream function defined in the 
usual way), the equations are 

a3ij i;JI a2rl, 
ily3+sinXcosX+cc0sinX=-P _!!P! (1) 

FY (?Xl?Y iiXdY2 

I PH hj 8 slj 29 

Pr c?Y2 (7YPX ilX8Y 

with boundary conditions 
_ 

$=g=O. 0=1 on Y=O 

and 

24 
-+sinX, 8-O as Y+a, 
SY 

(2) 

(3) 

Here a = g/?ATa/Ui is a non-dimensional parameter 

which describes the relative importance of natural con- 
vection to forced convection. This is seen by writing 

1x1 = Gr/Re’. 
We have c( > 0 for a heated cylinder in which case 

the buoyancy force term is positive and this aids the 
development of the boundary-layer (acting like a 

favourable pressure gradient), while for c1 < 0 the cylin- 
der is cooled and the buoyancy forces oppose the 
development of the boundary layer. 

3. SOLUTION 

Equations (1) and (2) were solved numerically using 
a method similar to that described in [4]. In this case 
sinX/X + I as X + 0 so the appropriate transfor- 

mation is $ = Xj’(X. Y). Equations (1) and (2) then 
become 

with boundary conditions 

8 
f‘=--0, 0=1 on Y=O 

8Y 

?f sin X 
(6) 

?Y -*X’ 
n-+0 as Y+x. 

Equations (4) and (5) were solved using y = 8f/?Y 
and 0 as dependent variables as follows. Derivatives 
in the X-direction were replaced by differences and all 
other terms averaged. This gave two ordinary differ- 

ential equations which were then differenced in the 
Y-direction and the resulting non-linear algebraic 
equations solved iteratively by the Newton-Raphson 
method. The linear algebraic equations arising in the 

iterative process were solved by Choleski decomposi- 
tion into upper and lower triangular matrices, so that 
using the particular forms of the equations, the com- 
puter storage could be kept to a minimum. The iter- 

ations were repeated until the difference was less than 
10e6, and errors in the X-direction were kept small 

by choosing the step length in this direction so that the 

difference in two solutions, obtained by covering the 

interval in one and then two steps was less than 5.10-“. 
A step length of 0.1 in the Y-direction was found 

satisfactory for an overall accuracy of four figures. The 
position where the outer boundary condition was 
applied had to be varied from Y = 10 to Y = 20. 

From the velocity and temperature profiles thus 

calculated, heat transfer Q and skin friction t, de- 
fined by 

and 

were evaluated. Values of Q and T,+, for various CL are 
given in Tables 1 and 2 respectively. 

The case CI = 0 is the forced convection solution and 
values oft, have already been obtained by [5] using 

the transformation suggested by [6]. This transfor- 
mation could not be used for this problem as it is 
singular at X = 7~. The results show that increasing c( 
delays separation and that separation can be sup- 

pressed completely in 0 < X < n for sufficiently large a. 
The variation of the separation point X, with a is 
given in Fig. 1. The actual value of c( which first gives 

no separation is difficult to determine exactly as it has 
to be found by successive integrations of the equations, 
and a further difficulty was encountered as the numeri- 
cal solution indicated an increase in TV and Q very 

,I, I I 1 
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a 

FIG. 1. Variation of the separation point X, with a. 
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Table 1. Heat transfer Q for various E 

a ____.._~ 
X - 1.75 - 1.5 - 1.0 -0.5 0.0 0.5 0.88 0.89 1.0 2.0 5.0 

0.0 0.4199 0.4576 0.5067 0.5420 0.5705 0.5943 0.6096 0.6100 0.6156 0.6497 0.7315 
0.2 0.4059 0.4498 0.5018 0.5380 0.5668 0.5911 0.6067 0.6071 0.6115 0.647 1 0.7261 
0.4 0.4236 0.4865 0.5260 0.5564 0.5817 0.5979 0.5983 0.6028 0.6393 0.7193 
0.6 0.3373 0.4594 0.5056 0.5391 0.5661 0.5833 0.5837 0.5885 0.6264 0.7082 
0.8 0.4160 0.4760 0.5145 0.5443 0.5631 0.5636 0.5686 0.6086 0.6929 
1.0 0.3326 0.4353 0.4826 0.5165 0.5375 0.5380 0.5435 0.5863 0.6737 
1.2 0.3784 0.4426 0.4828 0.5066 0.5072 0.5133 0.5597 0.6509 
1.4 0.2736 0.3928 0.4431 0.4709 0.4716 0.4785 0.5294 0.6248 
1.6 0.3280 0.3972 0.4307 0.4314 0.4394 0.4960 0.5959 
1.8 0.2114 0.3444 0.3863 0.3872 0.3967 0.4601 0.5645 
2.0 0.2821 0.3383 0.3394 0.3509 0.4225 OS311 
2.2 0.1970 0.2871 0.2885 0.3029 0.3842 0.4959 
2.4 0.2331 0.2350 0.2540 0.3460 0.4592 
2.6 0.1766 0.1796 0.206 1 0.3088 0.4205 
2.8 0.1162 0.1227 0.1634 0.2730 0.3790 
3.0 0.0745 0.1354 0.238 1 0.3321 
x 0.1033 0.1306 0.2122 0.29 18 

Table 2. Skin friction zW for various CI 

a 

X - 1.75 - 1.5 - 1.0 -0.5 0.0 0.5 0.88 0.89 I.0 2.0 5.0 

0.0 0.0~ ~.~ o.OmO 0.~ 0.~ 0.~ 0.0000 0.0000 0.~ 0.~0 O.NOO 
0.2 0.0066 0.0533 0.1257 0.1871 0.2427 0.2945 0.3321 0.3330 0.3436 0.4354 0.6803 
0.4 0.0741 0.2266 0.3511 0.4627 0.5662 0.6409 0.6429 0.6639 0.8464 1.3318 
0.6 0.0026 0.2784 0.4706 0.6393 0.7941 0.9057 0.9085 0.9398 1.2106 1.9277 
0.8 0.2554 0.5271 0.1552 0.9614 1.1088 1.1125 1.1538 1.5094 2.4447 
1.0 0.1069 0.5051 0.7982 1.0561 1.2383 1.2430 1.2938 1.729s 2.8648 
1.2 0.3890 0.7615 1.0727 1.2886 1.2941 1.3541 1.8637 3.1761 
1.4 0.1253 0.6429 1.0121 1.2608 1.2671 1.3356 1.9117 3.3129 
1.6 0.4405 0.88 14 1.1625 1.1695 1.2459 1.8793 3.4557 
1.8 0.1069 0.6927 1.0072 1.0491 1.0986 1.7781 3.4300 
2.0 0.4599 0.8131 0.8295 0.9117 1.6236 3.3053 
2.2 0.1842 0.6012 0.6103 0.7063 1.4334 3.0928 
2.4 0.3936 0.4033 0.5048 1.2248 2.8033 
2.6 0.2112 p.2219 0.3287 1.0123 2.4447 
2.8 0.071 I 0.0847 0.1979 0.8043 2.0188 
3.0 0.0149 0.1292 0.6002 1.5154 
n 0.0504 0.1206 0.4508 1.0919 

close to X = x for solutions with c1 near this value. This 

was thought to be caused by the finite difference re- 
placement of the pressure gradient term, which could 
be done in several ways. Various forms were tried, all 
of which gave the above effect with the results in good 
agreement with each other. The numerical solutions 
indicate that this value lies between CI = 0.88 and 
B = 0.89. In fact we can argue that separation will not 
occur for n > 1, as follows. Equation (1) gives, on Y = 0, 

a31j 
~+sinX(ix-t-cosX) = 0. 

Though (a’$/aY’), = 0 at X = X,y, the streamwise vel- 
ocity component a$/aY will be positive in the neigh- 
bourhood of Y = 0 and so (~3~t$/;/aY~)e 2 0 at X = X,. 
From the above, this means that sin X(a + cos X) < 0, 
which cannot hold in 0 < X < n for a > 1. The numeri- 
cal results also show that, in those cases when the 

boundary layer separates, 5, + 0 and Q -+ QS( f 0) as 
X + X, in a singular way as was previously found by 
[4] for a vertical flat plate. 

From Fig. 1, it can be seen that there is a value ot 

u = ~(0 below which a boundary-layer solution is not 
possible. The reason is that for a < 0 the cylinder is 
cooled and the natural convection boundary layer 
would start at X = zt and for sufficiently small cz there 

comes a point where the flow of the stream upwards 
cannot overcome the tendency of the fluid next to the 
cylinder to move downwards under the action of the 
buoyancy forces. This is an unstable situation and 
whether a boundary layer can exist at all on the 
cylinder for ~1 < a0 is still an unanswered question. 

The equations for fO( Y) and e,(Y), the values of ,f 
and 0 at the stagnation point X = 0 are 

&” +fof;;‘- fd’ + 1 + af& = 0 (7) 

FL+ Prfo& = 0 (8) 
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with transformation 

fo(O) =.fd@) = 0, e,(o) = 1 
(Cl\ fo( Y) = (x*4(q), fIo( Y) = 19(q) and n = aa Y. 

The equations become 
\‘I 

(where primes denote differentiation with respect to Y). 
These equations are in agreement with those given in 

[3], and they show that the forced and natural con- 
vection effects have the same importance near X = 0. 

Equations (7) and (8) were solved using the same 

method as was used in the solution of the ordinary 
differential equations arising in the solution of the full 
equations. Values off{(O) and 0,(O) for various M are 
given in Table 3. c(~ was found by solving equations 

Table 3. Values of f;(O) and 00(O) for various r 

a .fb”(O) Kl(O) 
fd’(O) 

(series) 
eb(O) 

(series) 

- 2.0 
- 1.9 
- 1.8 
- 1.6 
- 1.4 
- 1.2 
-1.0 
-0.8 
-0.6 
- 0.4 
-0.2 

0.0 
0.2 
0.4 
0.6 
0.8 
I.0 
1.4 
1.8 
2.2 
2.6 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 

-0.29856 - 0.33098 
- 0.09987 - 0.38467 

0.0 I950 - 0.40993 
0.20923 - 0.44409 
0.36982 - 0.46907 
0.5 1460 - 0.48935 
0.64886 - 0.50667 
0.77554 -0.52193 
0.89627 -0.53566 
1.01219 -0.54818 
1.12410 -0.55973 
1.23259 -0.57047 
1.33810 - 0.58052 
1.44100 - 0.58999 
1.54158 - 0.59895 
I .64007 - 0.60747 
I .73666 -0.61559 
1.92481 -0.63079 
2.1071 1 - 0.64484 
2.28432 -0.65792 
2.45704 -0.67018 
2.62587 -0.68173 
3.03319 - 0.70806 
3.42296 -0.73151 
3.79838 -0.75274 
4.16176 -0.77218 
4.51480 -0.79017 
4.84881 - 0.80693 
5. I9484 - 0.82264 

1.848 -0.835 
2.003 - 0.786 
2.167 -0.765 
2.332 -0.755 
2.496 -0.751 
2.659 -0.751 
3.056 -0.759 
3.441 -0.771 
3.812 - 0.785 
4.173 - 0.800 
4.525 -0.814 
4.867 - 0.828 
5.202 -0.841 

(7) and (8) by a matching method subject to the extra 

boundary condition that f{(O) = 0, treating a as un- 

known. This gave x0 = - 1.81776. A solution was found 

for a < a0 which gavef[(O) < 0. 
For a > 0, a solution of equations (7) and (8) for 

large r can be found. Following [2], we make the 

#“+Q+&“_@Z+@-’ = 0 (10) 

8” + Pr@ = 0 (11) 

with boundary conditions 

4(O) = 4’(O) = 0, e(0) = 1 

4’ -+ a -+, B--+0 as q+co, 
(12) 

(where primes denote differentiation with respect to q). 

(12) suggests an expansion in the form 

6 = ~o(rl)+r~*~l(vl)+a-‘~2(l?)+... 

0 = Oo(~)+a~tBl(rl)+a-‘82(9)+... 

The equations for 4. and o. are those for the natural 
convection boundary layer at the lower stagnation 
point of a horizontal cylinder and are given by [7]. 
The equations for & and Bi (i = 1,2,. .) are linear, 
and on solving these, expansions for f{(O) and Oo(0), 
valid for large a, are found as 

J{(O) = r*(0.81701 +O.O2319a-*+ l.O08Ola-‘+ . ..) 

(13) 

co(O) = -a*(0.42143+0.04701a-i+0.36652c(~1 + . ..) 

(14) 

Values off{(O) and &o(O) evaluated from (13) and (14) 
are given in Table 3, and these show good agreement 
with the exact values even at moderate values of a. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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CONVECTION MIXTE DEPUIS UN CYLINDRE CIRCULAIRE HORIZONTAL 

Resume-Le couche limite de convection mixte sur un cylindre circulaire horizontal, place dans un Ccoule- 
ment ascendant vertical, est Ctudie dans les deux cas du cylindre chauffe et refroidi. On trouve que le 
chauffage retarde la separation et peut, si le cylindre est suffisamment chat@ la supprimer complbtement. 
Le refroidissement du cylindre rapproche le point de separation du point d’arr&t le plus bas et pour un 

cylindre assez refroidi il n’y a pas de couche limite sur le cylindre. 
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GEMISCHTE KONVEKTION AN EINEM HORIZONTALEN KREISZYLINDER 

Zusammenfassung-Sowohl fur beheizte wie fur gekiihlte, horizontale Kreiszylinder wird die Grenzschicht 
bei gemischter Konvektion und senkrecht aufsteigender Striimung untersucht. Es wurde festgestellt, dal3 
durch die Beheizung des Zylinders die Ablosung verzogert wird; bei entsprechend hohen Zylindertem- 
peraturen tritt iiberhaupt keine Ablosung mehr auf. Eine Kiihhmg des Zyhnders bewirkt eine Ann5herung 
des Abliisepunktes an den unteren Staupunkt. Bei geniigend tiefen Zyhndertemperaturen ist iiberhaupt 

keine Grenzschicht mehr am Zyhnder zu beobachten. 

CMEIIIAHHAII KOHBEKDMII OKOJIO I’OPM30HTAJlbHOI-0 
KPYI-JIOI-O LWUIHH~PA 

,blOTa~Sl - MCCJIeAyeTCH IIOrpaHA’iHbIti CJIOfi Ha IlOBepXHOCT&i rOpH30HTaJIbHOrO Kpyr.ilOrO 

IJRJIiiHApa (IIpH HarpeEie A OXJIa~AeHHPi) ITpki CMeIIIaHHOi? KOHBeKWiU B HaIlpaBJleHHOM BepTHKaTIbAO 

BBepx noToKe. IIoKa3au0, ‘1~0 uarpea uunmrnpa 3ar5rrrfaaer 0TpbIB norpaauraoro cnoK H Ame 

MOW(eT nonHocTbtO ~cKmowTb ero B cnyyae crinbrioro uarpeea. Oxnaxr.nemie swnriHnpa chfemaer 
TOYKy OTpbIBa ITOrpaHRYHOrO CJIOIl K KpWTWqeCK0i-i TO’IKe, a B CJIyYae AOCTaTO‘IHOrO OXJIaXCAeHHR 

LWIHHApa IIOrpaHWiHbIi CJIOi He o6pa3yerca Ha er0 IIOBepXHOCTH. 
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